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Thermal deposition of CaF2 onto a glass substrate creates a nanoscale rough surface. A series of samples
with differing nominal CaF2 film thicknesses have been fabricated, and the topography has been investigated
using atomic force microscopy. Measured values for the statistical characterization of the samples are presented
including the exponents describing the scaling behavior of the surfaces. We find that the roughness exponent
a=0.88±0.03, the growth exponentb=0.75±0.03, and the dynamical exponentz=a /b=1.17±0.06. We also
measure the multifractal spectra and nearest neighbor height difference probability distribution. The results are
consistent with noise dominated by a power-law distribution with exponentm+1<4.6. Profilometer measure-
ments were used to determine the porosityf of the deposited films, which we find to be constant for all film
thicknesses withf<0.46.
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I. INTRODUCTION

Rough calcium fluoride has been used extensively as a
substrate to create rough metallic surfaces that have been
studied using surface plasmon techniques[1–5]. Several of
those studies have investigated how the roughness of the
metallic surface changes with different thicknesses of CaF2
[3,4,6]. Other authors have measured surface roughness as a
function of CaF2 thickness for both metallic coated and un-
coated CaF2 surfaces using a replication technique followed
by a microdensitometer analysis of the impression[7,8]. One
purpose of the present work is to characterize deposited CaF2
films on glass as a function of coverage using atomic force
microscopy(AFM) and profilometer measurements. We are
not interested in the optical properties of metals deposited on
these surfaces, but rather our interest is in using the surfaces
themselves as an adsorption substrate for4He thin films. This
makes the roughness characteristics of the surfaces produced
of direct interest. The results of measurements on two sets of
substrates spanning similar thickness regimes are reported
here. The first set, referred to as I, contains substrates made
solely for the purpose of surface analysis. The second set(II )
is comprised of samples that were used for a4He thin film
adsorption study after which the surface structure of the sub-
strates was examined. A separate report will provide the de-
tails of the low temperature experiments studying4He ad-
sorption and sound modes of the adsorbed4He films [9].
Data were also collected on a third set(III ) of substrates
spanning a more limited thickness regime and consisting of
CaF2 deposited on gold plated glass.

In addition to the characterization of the CaF2 films for
4He adsorption studies, we present an analysis of the AFM
images that show the scaling behavior of the surfaces. The
subject of nonequilibrium surface growth and the kinetic
roughening of surfaces is of considerable interest. Many
studies including theoretical work, numerical simulations,
and experiments have contributed to the subject of dynami-
cal scaling of growing interfaces and involved a variety of

systems. A number of different models have been proposed
that incorporate different combinations of processes that may
be relevant during the growth of the surface. In many cases
the scaling exponents, which characterize each universality
class, can be determined by solving the governing stochastic
growth equations exactly or by numerical simulation. By
preparing thin films of varying thicknesses on flat substrates
the scaling behavior of the surfaces can be observed experi-
mentally in 2+1 dimensions. Several reviews have been
written on this subject[10–13].

From our measurements and analysis we report obtained
values for the roughness exponenta, the growth exponentb,
and the dynamical exponentz=a /b for a range of nominal
thicknesses of CaF2 deposited on glass. We interpret these
results as evidence for the existence of power-law-distributed
noise in our samples, which indicates nonuniversal behavior.
Prior to this report a brief mention of the fractality of thin
CaF2 films was made in the literature, but the results were
inconclusive[14]. We observe that our surfaces indeed ex-
hibit multifractality. We have previously reported on the mul-
tifractality and power-law distributed noise in this system
[15]. The purpose of the current paper is to thoroughly report
on our characterization of the roughness of vacuum depos-
ited CaF2 surfaces.

CaF2 was chosen for this study because it can be easily
deposited and patterned on substrates, and is thus suitable for
our 4He film experiments. In Sec. II we discuss sample fab-
rication, the imaging procedure and height profile measure-
ments. Sections III and IV consist of results derived from the
AFM and profilometer measurements. Section III outlines an
analysis of the surfaces similar to what has been done previ-
ously in this group[16,17] and by others, which allows for
comparison. This includes the calculation of length scales,
which are said to be characteristic of the surface structure.
Section IV, on the other hand, presents the same AFM data
analyzed within the dynamical scaling framework. Conclud-
ing remarks are presented in Sec. V.
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II. EXPERIMENTAL DETAILS

A. Sample fabrication

All samples were fabricated using the same protocol; the
only differences were the amount of CaF2 deposited and ad-
ditional depositions of Ag and Al on the substrates in set II,
which were used during the low temperature experiments at
T=1.671 K[9]. The samples in set II were glass microscope
slides cut to 4.4532.54 cm. Before each evaporation the
glass substrates were mounted in the bell jar and the pressure
was reduced to,30 mT and a 1.5-kV ion etch was applied
for 10 min. The pressure in the bell jar was then reduced to
,5 mT, and the material was deposited. First, silver and alu-
minum were selectively deposited to function as drivers and
detectors for the helium sound modes. Specifically, 50 nm of
silver was vacuum deposited to act as electrical contact pads,
followed by 0.15-mm32.0-cm330-nm silver strips which
function as sound drivers. Similar aluminum strips were then
deposited to form transition edge superconducting detectors.
The silver and aluminum depositions were from tungsten
wire basket sources at a rate of 0.5 nm/sec. Last, 99.9% pure
vacuum deposition grade CaF2 was vapor deposited onto the
glass substrates from a baffled source[18] at a rate of
0.2 nm/sec. The entire sample was exposed during the CaF2
evaporation except for a 1.5-mm strip along each 4.45-cm
edge where the contact pads are located. The mask used to
define the exposed area during the CaF2 evaporation was
1.6 mm thick and mounted snugly against the sample. The
temperature of the sample increased with CaF2 deposition
time starting from room temperature. Following the deposi-
tion, the sample was allowed to rest in the bell jar for
10 min, removed(briefly exposed to air) and then stored
under vacuum. The value of the film coveraged, used to
identify each sample, was determined from the deposition
observed on a quartz crystal microbalance(QCM), measured
simultaneously with the deposition on each glass substrate.
The coveraged is reported here as a nominal film thickness
presuming the bulk density of CaF2. Due to the nonzero
porosity of the CaF2 films the thicknesses measured by the
QCM, d, are only nominal, and the samples are referred to
by these nominal thicknesses. The contribution to the actual
film thicknesshTotal from the CaF2 is d. The two quantitiesd
and hTotal are related byhTotal=d/ s1−fd with the porosity
f=0.462±0.006, independent of coverage(see Sec. III B).
Samples in set II were created with the following nominal
thicknesses, as measured by the QCM: 50, 125, 220, 370,
520 nm, and plain glass(no CaF2).

The samples fabricated exclusively for surface structure
investigations constitute set I. The substrates were uncut
glass microscope slides 7.6232.54 cm. CaF2 was deposited
on the substrates(i.e., no Ag, no Al) using the same proce-
dure as for the substrates in set II. A 1.6-mm-thick mask
covered a 1.5-mm strip along the entire perimeter of the
glass slide. Samples in set I consisted of the following nomi-
nal thicknesses: 30, 50, 90, 69.5, 125, 175, 220, 270, 300,
330, 370, 450, and 520 nm. Fabrication of samples with
thicknesses equal to those in set II allowed for a check of the
reproducibility of the surfaces. This also provided evidence
for the absence of significant surface structure modification

due to the large temperature range experienced by the set II
samples.

B. Experimental measurements

Under ambient conditions(air, room temperature) several
images were taken of each sample using AFM. The images
were taken at random locations sufficiently away from the
glass-CaF2 boundary and the narrow Al and Ag bands on the
set II samples. The scan size of the set II samples was 2
32 mm. The scan size of the set I samples was 232 mm for
dù90 nm and 131 mm for dø125 nm. Images of both
scan sizes were taken ford=90 and 125 nm. The AFM scan-
ning was done in tapping mode at a rate of 1 Hz with a
silicon tip of spring constant 40 N/m. The nominal radius of
the tip, as stated by the manufacturer specifications is less
than 10 nm. Scanning the surfaces in tapping mode increases
the lateral resolution, and we estimate our lateral resolution
to be less than 5 nm. However, our ability to measure the
overall morphology of the CaF2 surface is somewhat limited
due to the curvature of the AFM tip. After the first image was
taken the sample was rotated approximately 90° and a sec-
ond image was taken. The images showed no evidence of
anisotropy.

The height of the CaF2 film on each sample was measured
using a profilometer. The profilometer consists of a stylus
with a radius of 12.5mm, that moves across the glass-CaF2
boundary of the sample measuring the height profile. The
measurements were done by placing the sample so the stylus
of the profilometer started on the 1.5-mm strip not covered
with CaF2 and then moved through the CaF2 boundary, and
also in the opposite direction. A total of four measurements
were taken on each substrate, each one at a different location
on the perimeter of the substrate. Due to the large radius of
the stylus, relative to the surface features of the CaF2, the
detailed surface structure cannot be detected using the pro-
filometer.

III. SURFACE CHARACTERIZATION

A. AFM: Sample sets I and II

Representative images taken by AFM are shown in Fig. 1.
Each image is 5123512 pixels in size, and the values of the
pixels, which correspond to the height of the surface at each
location, form a matrixG. The vertical height given by each
matrix element is measured from a plane, such that the av-
erage of all elements is defined to be zero. Clearly, from
these images the structure changes with increasing thickness
of CaF2. The structures become larger both in height and
width, with increasing deposition thickness. The typical ver-
tical length scale of an image is quantified by constructing a
histogram, normalized to unity, of the matrix elements ofG,
and fitting the histogram data to a normal distribution. Our
measure of the typical size of the vertical topography is
given by the width of the best fit normal distributionsz.
Figure 2 shows typical height distributions and best fits for
various selected surfaces.

The surface height profiles of all surfaces is nearly Gauss-
ian as is represented in Fig. 2. As a better measure of the
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Gaussian nature of the height profiles for each image we
calculate the skewnessm3 and kurtosism4, defined as

m3 =
kfhsrW,td − h̄sL,tdg3l

s3 , s1d

m4 =
kfhsrW,td − h̄sL,tdg4l

s4 , s2d

wheres2=kfhsrW ,td− h̄sL ,tdg2l is the variance of the heights.
The brackets denote an average over all pixels on a single
image.hsrW ,td is the height of the surface atrW and timet and

h̄sL ,td is the mean height of the image of sizeL. Since the
samples were fabricated using a constant deposition rate, the
time t, which is the typical parameter for relevant theoretical
work, is a measure ofd. In other words different times refer
to samples with different film thicknesses. If the height pro-
files were perfectly Gaussian, thens=sz. The skewness
measures the symmetry of the profile about its mean and is

zero for a true Gaussian. A positive(negative) skewness
means that the points further from the mean of the distribu-
tion are more likely to be above(below) the mean surface
level. The kurtosis is a measure of the peakedness of the
distribution. If the distribution is relatively large near the
mean and the tails of the distribution, while being relatively
small at intermediate values, then the kurtosis of the distri-
bution is larger than that of a Gaussian( m4=3 for a Gauss-
ian). This means that the kurtosis is sensitive to outliers. If a
distribution is such that it has a larger(smaller) number of
outliers than a Gaussian, then its kurtosis will be larger
(smaller) than 3. Figure 3 showsm3 andm4 for the two sets
of samples, where we ensemble averaged the values. For
d.250 nm the height distribution of the images appears to
be consistently Gaussian, whereas ford,250 nm the data
are more scattered away from true Gaussian values.m3 tends
to be negative in this region, whilem4.3. This indicates that

the values ofhsrW ,td furthest fromh̄sL ,td tend to be negative.
In other words, the valleys on the surface are comparatively
deeper than the hills are tall ford,250 nm.

To determine a typical size of the topography parallel to
the substrate we calculate the correlation between subsets of
the image matrixG. SsrWd is anm3m subset ofG beginning at
rW, whererW andrW1 are two component vectors in the plane of
the image. We calculate the correlation coefficientF be-
tweenSsrWd andSsrW+rW1d using the standard definition[19]

F =

o
i,j=1

m

sSsrWdi j − kSsrWdldfSsrW + rW1di j − kSsrW + rW1dlg

Îo
i,j=1

m

fSsrWdi j − kSsrWdlg2Îo
i,j=1

m

fSsrW + rW1di j − kSsrW + rW1dlg2

, s3d

FIG. 1. Typical 232-mm images produced from the AFM scans
of the surfaces of the following nominal thickness of CaF2 in nm:
(a) 0 (plain glass), (b) 50, (c) 125,(d) 220,(e) 370, and(f) 520. The
size of the structure increases with increasing CaF2 thickness.

FIG. 2. Typical distributions, normalized to unity, of the heights
obtained from set II AFM images of the following nominal thick-
ness of CaF2 in nm: (a) 0 (plain glass), (b) 50, (c) 125, (d) 220, (e)
370, and(f) 520. Solid lines indicate fits to a normal distribution of
width sz.
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where the brackets denote an average over all matrix ele-
ments ofS. rW1 is scanned to cover all adjacent and overlap-
ping subsets ofSsrWd, where theF corresponding to eachrW1

form the elements of the 2m+132m+1 square matrixL. In
other words, the elementL1,1 is the correlation betweenSsrWd
and the adjacent subset in the upper left corner ofSsrWd. As
rW1→0 the subsets become increasingly overlapping and at
rW1=0, the subsets completely overlap soFrW1=0=Lm+1,m+1=1.
The elementL2m+1,2m+1 is the correlation betweenSsrWd and
the adjacent subset in the lower right corner. Ideally one
would like to calculateL for all rW, i.e., all subsetsSsrWd of G,
but due to the large computational resources necessary for
such a calculation, we only calculate aL for 25 different
values ofrW. The results obtained using 25 values ofrW are in
agreement with several trial calculations averaging over a
greater number ofrW, indicating that using 25 values is suffi-
ciently representative and allows us to avoid averaging over
all rW. To compare the horizontal length scales, we define the
function

GsrW1d = kLl, s4d

where the brackets denote the average over different values
of rW. Figure 4 shows typical plots ofGsrW1d calculated from

232-mm images for various samples withm=50 pixels.
GsrW1d is well represented by a bivariate Gaussian distribu-
tion, namely exps−rW1

2/2sxy
2 d, with width sxy. The width of the

distribution is what we use to quantitatively compare the
horizontal topography of the surfaces.

The definition of the topographic length scales that we use
here differs from that of previous authors. Typically authors
have defined an autocovariance function and used that to
determine both the vertical and horizontal length scales of
the surfaces, by fitting a Gaussian function of the form,
da

2 exps−rW1
2/2sACF

2 d to the autocovariance function calculated
from the raw data. In their analysis,da is the measure of the
vertical topography andsACF the typical horizontal topogra-
phy (see, e.g., Ref.[20] ). Although the definitions of the
vertical length scale parameters are different, the values
should be similar so that quantitative comparisons can be
made[20]. The functionGsrW1d is similar to the autocovari-
ance function defined by other authors, and since the the
average of all elements ofG is zero, the only difference in
the functions is the normalization. Since it is the widths of
these functions that define the lengths of the horizontal to-
pography, a direct quantitative comparison can be made be-
tween our results and those of other authors.

Figure 5 shows bothsz andsxy as a function of nominal
CaF2 thicknessd, where we have included several data
points from previously published results. Overall the results
from set I and set II were in agreement and therefore no
distinction is made be between the two sets in this plot and
many of the other plots to be presented here. The values of
sz andsxy for d=0 nm are those for glass with no CaF2. We
include them in the plots to be thorough, but eschew them
from the functional fits described below.

The sz data (filled symbols) show an increasing trend.
The solid line in the figure shows a fit of the data to a func-
tion of the form As1−e−d/d0d, with A=33±1 nm andd0

FIG. 3. Plot of skewness(filled symbols) and kurtosis(open
symbols) vsd. The solid lines are the values ofm3 andm4 for a pure
Gaussian distribution.

FIG. 4. (Color online) Typical plots of the functionGsrW1d with
m=50 pixels obtained from 232-mm set II AFM images of the
following nominal thickness of CaF2 in nm: (a) 0 (plain glass), (b)
50, (c) 125, (d) 220, (e) 370, and(f) 520. The horizontal axes are
the components of the vectorrW1 each ranging from −50 to 50 pixels
and the vertical axes showGsrW1d with the peaks normalized to unity.

FIG. 5. Topographic length scales as measured using AFM as a
function of nominal CaF2 thicknessd. Filled symbols aresz and
open symbols aresxy. Squares denote data taken from this experi-
ment, triangular points were taken from Ref.[16], and circular
points were taken from Ref.[17]. The points corresponding tod
=0 nm are plain glass substrates(i.e., no CaF2). Solid lines indicate
functional fits, as described in the text, and the dashed lines are the
results of Varnieret al. [8] shown for comparison.
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=640±30 nm. This functional form incorporates the physical
restriction thatsz must be bounded asd→`, which is con-
sistent with our results and those of Varnieret al. [8], who
report results for the the fitting parametersA and d0 of 14
and 238 nm, respectively.

The results forsxy (open symbols) as a function ofd are
shown in Fig. 5. A fit to a straight line, omitting the plain
glass value represented byd=0 nm, yields a slope of
0.041±0.003, with a vertical axis intercept of 9.7±0.7 nm.
For d,100 nm the data are in statistical agreement with the
linear fit but may show a hint of a possible flattening trend
near sxy=12.5 nm. A distinction cannot be made between
these possibilities due to the error of the data points. It
should be noted that our resolution is limited by the the finite
size of the tip used during the AFM scans(see Sec. II B). As
a result the lower values ofsxy may be artificially high.
Varnieret al. have reported results with a slope of 0.085 and
an intercept of the vertical axis equal to 12 nm. The intercept
is outside of our range of error, but the difference is not
large. The slopes, on the other hand, differ by roughly a
factor of 2.

The functional fits forsz and sxy as a function ofd as
reported by Varnieret al. are shown as dashed lines in Fig. 5
and ours are shown as solid lines. For small values ofd all
results are in good agreement forsz and modest agreement
for sxy. The largest discrepancies occur at larged where the
structures reported by Varnieret al. are shorter and wider
than the structures on our samples. Varnieret al. samples
were fabricated using a deposition rate of 1.5 nm/sec. at a
pressure of 10mT. Their deposition rate is larger than ours
by a factor of 7.5 and the pressure is twice as large as ours.
These factors undoubtedly change the roughness of the de-
posited CaF2, and may account for the differences. We have
not carried out a detailed study of the effect of different
deposition rates and pressures. Naïvely one might expect that
a faster rate of deposition at higher pressure would create a
rougher film. However, using a larger deposition rate would
probably result in the substrate having a higher temperature
during deposition when compared to a smaller rate. This
higher substrate temperature might increase the surface dif-
fusion of the deposited particles which should have a
smoothing effect, leading to shorter and wider structures. An-
other possible explanation for the differences may be instru-
mental; Varnieret al. used a replication technique, whereas
we imaged the surface directly. Our technique may be more
capable of probing deeper into the surface features resulting
in a wider height distribution and consequently larger values
of sz, but this does not explain the discrepancies insxy. An
additional influence on the the measurement ofsxy at smalld
may be the roughness of the glass substrate itself. As indi-
cated by thed=0 nm points in Fig. 5, the glass substrate has
very little vertical structure,sz=0.4±0.2 nm, but the struc-
tures tend to be fairly wide withsxy=23±2 nm. For the CaF2
surfaces, as the film gets thicker and the structures get taller,
GsrW1d will be less sensitive to the background roughness of
the glass substrate. Therefore the structure of glass may in-
fluencesxy at smalld but not at larged where we see sig-
nificant differences. Since Varnieret al. did not report the
uncertainty for their measurements nor did they report
roughness parameters for their plain glass substrates, the dis-

cussion of the comparisons is only speculative.
Several other groups investigated how the roughness of

CaF2 changes with film thickness[3,4,6]. These experiments
coated the CaF2 with a layer of Ag, and used surface plas-
mon techniques to measuresz. The values ofsz found in this
manner are on the order of tenths of nanometers whend is
small and several nanometers asd gets larger. The values we
report are much larger than these. The difference is probably
due to the overcoating of Ag deposited atop the CaF2, as has
been suggested prevoiusly[8].

The AFM measurements also allow us to estimate the
increase in surface area due to the roughness. By knowing
the distance between pixels and the height of each pixel con-
tained in G, an effective surface area was calculated. It
should be noted that this estimate does not include any sur-
face area that is inaccessible to the AFM. The quantityC
used for comparison is the fractional increase of surface area
from that of a flat interface. We defineC=AAFM /Aflat−1,
whereAAFM is the surface area calculated from the matrixG,
andAflat is the surface area of an ideally flat surface of the
same size, i.e.,Aflat=232 mm or 131 mm. This definition
was chosen soC=0 for a flat surface, which facilitates our
functional fit described below. Figure 6 showsC as a func-
tion of d, where again we have included several previously
published data points.C increases asd increases. Again we
have fit the data to a function of the formAs1−e−d/d0d result-
ing in A=0.37±0.02 andd0=270±20 nm. This function sat-
isfies the condition that the increase in area must be bounded
as d→`. The scatter in the data increases noticeably ford
ù220 nm. The point taken from Ref.[16] is the most
anomalous. The general behavior of the data is in agreement
with that of sz shown in Fig. 5, which is expected.

B. Profilometer: Sample sets I and II

Representative height profiles of the CaF2 relative to the
glass substrate are shown in Fig. 7. Immediately following
the steep step in each profile there is a region with a much

FIG. 6. The fractional increase in areaC vs nominal CaF2 thick-
nessd. Squares denote data taken from this experiment, the trian-
gular point was taken from Ref.[16] and circular points were taken
from Ref. [17]. The point corresponding tod=0 nm is from the
plain glass substrate(i.e., no CaF2). The solid line is a function fit to
the data as described in the text.
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smaller nonzero slope that continues for a maximum of
,500 mm. This most likely originates from shadowing ef-
fects caused by the finite thickness of the mask used during
deposition. The step height was defined as the difference of
the baseline at smallxp and the baseline at largexp beyond
the sloped region that resulted from the shadowing effect.
From the size of the steps we can calculate the the porosity
of the CaF2 film. The porosity is defined asf=Vpores/VTotal,
whereVpores is the volume of the pores or voids in the film,
andVTotal is the total volume of the CaF2 and pores.Vpores is
defined to include voids on the surface and in the bulk of
film. By making the reasonable assumption thatf is inde-
pendent of the lateral position on the CaF2 surface and then
choosing an arbitrary area, the porosity reduces to

f = 1 −
d

hTotal
, s5d

wherehTotal is the total height of the deposited film as mea-
sured by the profilometer andd is the nominal film thickness
assuming bulk density as measured during deposition using a
QCM. Rearranging Eq.(5), suggests that a plot ofhTotal ver-
susd should be linear with a slope ofs1−fd−1, providedf is
independent ofd. Figure 8 shows the data for each nominal
film thickness. The values ofhTotal are averaged from four
step-height measurements taken from various different loca-
tions around the perimeter of each sample. As indicated by
the solid line, a linear fit to the data shows that the porosity
is relatively constant over the entire range of nominal film
thicknesses, withf=0.462±0.006. We note that the uncer-

tainty reported here is a result of scatter in the data. There
may be a systematic error present due to the differences in
measurement techniques ofd andhTotal. Using thin films of
Ag and Au, assumed to be largely nonporous, we estimate
that results in film thicknesses can be,10% higher from the
profilometer. Such tests cannot be done using CaF2, due to its
nonzero porosity.

At first thought a constant porosity seems logical. If a
particular film thickness has a density of equal-sized pores,
then as you increase the film thickness, and assuming the
density and size of the pores remains the same in the added
film, the porosity will remain constant. However, considering
Figs. 1 and 5, asd increases, the size of the surface structure
also increases, but the number of structures decrease, as is
evident from Fig. 1. Assuming that the pore size can be
reasonably estimated by the surface structure size, as the
pore size increases and the number of pores decrease, the
porosity does not change. Interestingly, this suggests that
these changes produce a canceling effect, resulting in the
porosity being independent of the film thickness.

C. Sample set III

A third set of substrates was fabricated using gold plated
glass. These samples were glass microscope slides, similar to
those used in sets I and II, cut to 1.2732.54 cm. 50 nm of
gold was thermally deposited onto all set III samples simul-
taneously with a deposition rate of 1.0 nm/sec. CaF2 was
then deposited over approximately half of the gold film. This
was done to allow AFM imaging of the gold surface and the
deposited CaF2 as well as provide a boundary for profilome-
ter measurements. Samples in set III were fabricated with a
more limited range of nominal thicknesses equal to 10, 20,
30, 60, 90, and 120 nm. AFM was used to produce 131
-mm images of the surfaces and profilometer measurements
were made in the same fashion as previously described.

Figure 9 shows the surface parameters(solid symbols) for
the set III samples as a function of nominal CaF2 thicknessd.
The data from sets I and II(open symbols) are also shown
for comparison. Thed=0-nm points correspond to the gold
film for the set III data andd=0 nm corresponds to plain
glass for the data from sets I and II. The skewness and kur-

FIG. 7. Representative plots of the height profiles measured
across the set II CaF2 deposition boundary of the following nominal
thickness of CaF2 in nm: (a) 50, (b) 125, (c) 220, (d) 370, (e) 520.
Note the differing scale on the vertical axis for each panel.

FIG. 8. Plot ofhTotal vs d for all samples. The solid line indi-
cates a fit to Eq.(5) resulting inf=0.462±0.006.

D. R. LUHMAN AND R. B. HALLOCK PHYSICAL REVIEW E 70, 051606(2004)

051606-6



tosis show very good agreement between the glass substrates
and the gold-plated glass substrates, as do the values ofsz
andsxy. On the other hand, the fractional increase in areaC
begins to disagree asd gets larger, with larger values ofC

for the gold plated substrates. The porosity determined from
a linear fit of Eq.(5) yields f=0.64±0.01(see Sec. III B
regarding the reported error) for the gold plate substrates
which is 39% larger than the porosity found for the set I and
II data. See Sec. IV D for a further discussion involving the
differences between CaF2 on glass and CaF2 on gold plated
glass.

IV. SCALING ANALYSIS

A. Background

The goal of the current section is to present a different
analysis of the surface data from that of the previous section.
Specifically, we will reveal the fractal nature of the surfaces
and the scaling behavior. To motivate this analysis we define
the interface widthwsL ,td of the two dimensional surface of
sizeL3L, which in our case is the image size, at timet as
[12]

wsL,td =ÎK 1

L2 E d2rfhsrW,td − h̄sL,tdg2L . s6d

Here rW is the vector defining the lateral position on the sub-
strate. For a given surface,hsrW ,td is the height at positionrW

and h̄sL ,td is defined to be the mean height. These variables
are the same as defined in Sec. III. The initial condition
defining the variables att=0 is that of a flat interface. The
brackets denote an average over different realizations, or in
other words, over different locations on the same sample.
Family and Vicsek[21] conjectured that rescaling space by a
factor ofb and time by a factorbz rescaleswsL ,td by a factor
of ba ultimately implying that

wsL,td , Lafst/Lzd, s7d

wherefsxd is a scaling function. If, for a given system sizeL,
wsL ,td saturates as time gets large thenfsxd→ constant as
x→`. This saturation occurs when

t , Lz s8d

and at that time the system is said to be correlated or in other
wordsji=L, whereji is called the correlation length parallel
to the substrate. ReplacingL in Eq. (8) with ji, which in fact
also holds for times less than the saturation time, we get

ji , t1/z. s9d

This then implies[21] that before saturationwsL ,td must be
independent ofL with

fsxd , xb and b = a/z s10d

and thus

wsL,td , tb, 1 ! t ! Lz s11d

and when the time is larger than the saturation time, i.e.,t
@Lz, the width is sensitive to the system size aswsL ,td
,La. The roughness exponenta characterizes the self-
affinity of the surface and the dynamic exponentz character-
izes the dynamics.

FIG. 9. Surface parameters for sample set III, CaF2 deposited on
gold (solid symbols) vs d. The data from sets I and II(open sym-
bols) are repeated in these plots for comparison. Thed=0 nm points
correspond to gold and plain glass for set III, and sets I and II,
respectively. The circles in(a) are the kurtosis and the triangles are
the skewness and the solid lines are the values for a Gaussian dis-
tribution. In (b) the squares aresxy and the circles indicatesz. The
solid line in (d) is a linear fit to Eq.(5) resulting inf=0.64±0.01.
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The task then becomes to determine the values of these
finite size scaling exponents. Theoretically this can be done
for a particular model using its stochastic growth equation,
either analytically or numerically. Various models have been
solved in this way in 1+1 dimensions and to a lesser extent
in 2+1 dimensions. The set of critical exponents for a par-
ticular model determines the universality class of the model.
The above treatment is applicable to the growth of a variety
of interfaces, such as fluid flow in a porous medium, the
propagation of burning fronts, biological growth, etc.[10].
Another experimental realization of interface growth is thin
film deposition, which occurs in 2+1dimensions. An assort-
ment of systems have already been investigated, including
for example, the vapor deposition of V2O5 [22] on Si, Si on
Si [23], Au on glass[24], and in a number of other experi-
ments some of which use ion bombardment and sputter
deposition(see, e.g., Ref.[10]).

Measurement of the saturation values ofwsL ,td for differ-
ent system sizes is usually not a practical way to experimen-
tally determinea due to the large saturation times for mac-
roscopic surfaces. Therefore to determinea for our system
of CaF2 on glass, we first calculate the height-height corre-
lation functions of the surface, as is commonly done[25].
For our system, we define theqth order height-height corre-
lation function as

Cqs,d =KK 1

L2 E d2r uhsrW,td − hsrW + ,W,tduqLL
u,W u=,

, s12d

where the inner brackets denote an ensemble average and the
outer brackets denote a radial average. The radial average
reduces the dependence ofCqs,d to the distance, between
two points and ignores the particular orientation of the two
points. All ensemble averages in this report are over two
realizations of the system. Although not immediately obvi-
ous, if ,,ji thenCqs,d scales as[25]

Cqs,d , ,gq s13d

anda=g2/2 [10]. To determineb we can measurewsL ,td vs
t, as indicated by Eq.(11) . The value ofb can also be
determined fromC2s,d [10], if t!Lz then as,→`,

C2s`d , t2b. s14d

As previously mentioned, depositing the CaF2 at a constant
rate provides for a simple relation between nominal film
thickness and time, namelyt,d.

B. Results

Figures 10 and 11 show typical log-log plots ofC2s,d as a
function of, for various values ofd. To reduce computation
time C2s,d was calculated only for,ø,max where,max=40
pixels for both images sizes, therefore,max=156 nm for the
232-mm images and,max=78 nm for the 131-mm images.
We fit C2s,d vs , to a function of the formA2,g2 for small,,
which gives usa=g2/2 for each value ofd. Since the result-
ing values ofg2 differ slightly for each value ofd, as dis-
cussed below, we have scaled the prefactorsA2 by dg2 so that
all data points have identical units.A2d

g2 vs d is shown in
Fig. 12 on a log-log scale. We have fit the data to a power
law, excluding thed=50 and 520-nm points from set II,
which produced anomalous values ofa (see below). The
result is shown by the solid which has the functional form
adb, wherea=0.004±0.001 andb=2.59±0.07.

FIG. 10. (Color online) C2s,d vs , for several of the 131-mm
sets of images.

FIG. 11. (Color online) C2s,d vs , for several of the 232-mm
sets of images.

FIG. 12. A2d
g2 vs d on log-log scales. The solid is a power-law

fit to the data,adb, wherea=0.004±0.001 andb=2.59±0.07. See
the text for further discussion.
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The measured values ofa for all sets of data are presented
in Table I and plotted in Fig. 13. The majority of the data are
scattered around a constant value ofā=0.88±0.03, as de-
picted by the solid line in the figure. Two values ofa were
anomalously low and were not taken into account inā; the
error for ā was calculated from the scatter in the data. These
low values were both from set II and correspond tod

=50 nm andd=520 nm. The error bars in Fig. 13 were cal-
culated from the fit in the usual manner[26]. It should be
pointed out that most of the data used to determinea were
not strictly linear, but had a very slight curvature, which may
be associated with sampling effects[27]. This nearly linear
behavior is illustrated in Fig. 14. Figure 14 showsC2s,d vs ,
for d=330 nm with the solid line indicating the best power-
law fit, which determinesa. The dataappearto show good
linearity for ,ø19.5 nm which corresponds to the first 13
data points on the plot, but closer examination reveals a
pseudolinear trend. The inset in Fig. 14 is a plot of the slope
of the best fit line versus the number of data pointsn in-
cluded in the fit.n is defined as starting from the first point,
i.e., the point with lowest value of,, for the data in Fig. 14.
In other words,n=3 for a fit to the first three points in Fig.
14, n=4 for a fit to the first four points in Fig. 14, etc. The
inset plot shows a subtle downward trend indicating that
C2s,d has slight curvature, which is not readily apparent
upon first inspection of the data. Due to this pseudolinear
trend, the number of points that should be included in the fit
to determinea is not clearly defined. The number of points
included in the each fit,nf, that yielded the reported values of
a were determined visually from plots similar to Fig. 14 for
each substrate.nf was chosen to be the point beyond which
the data visually deviated from the apparent linear behavior.
Due to the ambiguity of this choice we have also reported the
values ofa determined usingnf −4 andnf +4 for quantitative
comparison. These values are included in Table I asanf−4 and
anf+4, respectively. These values either lie within the range of
reported error or slightly beyond this range. This provides an
indication that our values ofa reported in Fig. 13 are robust.

Figure 15 shows a plot ofwsL ,td vs d for all sets of
images. The solid line is a fit to Eq.(11) resulting in b
=0.75±0.03 with a multiplicative prefactor of 0.17±0.03.
The data show good agreement with a power law over the
range of studied thicknesses. We have also plottedC2s`d vs
d in Fig. 16 where the values ofC2s`d were determined from
the plateau regions inC2s,d (see Figs. 10 and 11.) The solid
line is a fit to Eq.(14) resulting inb=0.75±0.03, which is

TABLE I. Values of a deduced from linear fits to the second
height-height correlation functionC2s,d for small ,. The values of
a found by includingnf −4 andnf +4 points in the linear fit are also
shown. The reported error is the statistical error calculated from the
linear fit for a. See the text for further discussion on the error ofa.

Set Lsmmd dsnmd nf a Error anf−4 anf+4

I 1 30 12 0.88 ±0.02 0.91 0.87

I 1 50 15 0.92 ±0.03 0.95 0.90

II 2 50 12 0.57 ±0.02 0.59 0.55

I 1 69.5 17 0.87 ±0.01 0.89 0.85

I 1 90 20 0.91 ±0.04 0.95 0.89

I 2 90 12 0.87 ±0.01 0.90 0.84

I 1 125 21 0.91 ±0.01 0.91 0.84

I 2 125 12 0.85 ±0.02 0.87 0.82

II 2 125 8 0.88 ±0.03 0.93 0.84

I 2 175 12 0.84 ±0.02 0.86 0.81

I 2 220 12 0.89 ±0.01 0.91 0.86

II 2 220 15 0.88 ±0.04 0.91 0.85

I 2 270 14 0.83 ±0.02 0.86 0.81

I 2 300 12 0.90 ±0.01 0.91 0.88

I 2 300 15 0.90 ±0.04 0.93 0.87

I 2 330 13 0.90 ±0.01 0.92 0.89

I 2 370 12 0.90 ±0.01 0.92 0.88

II 2 370 14 0.85 ±0.01 0.87 0.84

I 2 450 16 0.88 ±0.01 0.90 0.87

I 2 520 16 0.89 ±0.01 0.91 0.89

II 2 520 20 0.77 ±0.01 0.78 0.76

FIG. 13. a vs d for all surfaces. The solid line indicates the
average value,ā=0.88±0.03, excluding the two anomalously low
values.

FIG. 14. C2s,d vs , for d=330 nm. The solid line is the best
power-law fit for small,. The inset shows the slope of the best fit
line on a log-log scale versus the number of points included in the
fit starting from the data point corresponding to the smallest,. The
downward trend indicates a slight curvature in the data.
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identical to the value obtained from Fig. 15. The prefactor
resulting from this fit is 0.05±0.02. Not surprisingly, the data
indicate that the interfaces have yet to reach saturation.
Equation(13) only holds for,,ji, hence we can estimate
the correlation length,ji, from the location of the plateau
regions in the plots ofC2s,d. From this we estimate that
ji ,100 nm for all surfaces studied here. This is much less
than our system size, therefore Figs. 15 and 16 should not
show saturation. Usingā and the restriction in Eq.(10) , we
can estimatez=a /b=1.17±0.06.

Collectively the scaling behavior presented here provides
evidence that the morphology of our surfaces is fractal in
nature and follows the dynamical scaling description out-
lined in Eqs.(7)–(11). As discussed in Refs.[23,28], a dis-
tinguishing feature between a surface with a fractal-like in-
terface and a surface consisting of a collection of fairly
regular three-dimensional mounds is the existence of log-
periodic fluctuations inC2s,d for ,.ji for the surface with
the moundlike structures. No such fluctuations are seen in
C2s,d for ,.ji (see Figs. 10, 11, and 14). This provides
additional evidence for the fractal nature of our surfaces.

C. Discussion

Much of the theoretical work done to describe the kinetic
roughening process has arisen from the Kardar-Parisi-Zhang
(KPZ) equation[29],

] h

] t
= n¹2h +

l

2
s¹hd2 + h. s15d

n is an effective surface tension andl describes the strength
of lateral growth. The roughening is introduced by the noise
term h which is usually assumed to be Gaussian with

khsrW,tdl = 0 s16d

and

khsrW,tdhsrW8,t8dl , dsrW − rW8ddst − t8d. s17d

The critical exponents of Eq.(15) can be found analytically
in 1+1 dimensionssa=1/2,b=1/3d and estimated numeri-
cally in 2+1 dimensionssa=0.38,b=0.24d [10]. An addi-
tional restriction due to Galilean invariance is placed on the
exponents in all dimensions resulting from Eq.(15) [30–32],

a +
a

b
= 2. s18d

Many experimental investigations resulted in values of
a.1/2, which led to the exploration of quenched noise[10].
Zhang also proposed that a system dominated by noise that
follows a power-law distribution rather than being Gaussian
may lead to different exponents[33,34]. With an uncorre-
lated power-law probability distribution of the form

Pshd , pHh−sm+1d for h . 1

0 otherwise
s19d

the scaling exponents of the KPZ equation were reported for
a D+1 dimensional system to be[34,35]

a =
D + 2

m + 1
, s20d

b =
D + 2

2m − D
. s21d

Later work provided theoretical evidence that in fact these
equations were exact[36,37]. Equations(20) and(21) satisfy
Eq. (18) independent ofm. Equation(19) increases the prob-
ability of large noise events occurring when compared to a
normal distribution where the probability decreases exponen-
tially. These equations are likely to be valid forD
+1,m,mc, where there is a crossover to Gaussian-type be-
havior atmc. Several numerical simulations in 1+1 dimen-
sions have confirmed Eqs.(20) and(21) (see, e.g., Ref.[38]).
Experimental evidence in 1+1 dimensions for a power-law
noise distribution has been provided in systems including
two-phase fluid flow[39] and slow paper combustion[40,41]
by measuring the noise probability distribution directly along
with one or several critical exponents. In 2+1 dimensions it
appears that only one numerical simulation of the KPZ equa-
tion using Eq.(19) has confirmed the result forb in Eq. (21)

FIG. 15. Plot ofwsL ,td vs d (i.e., time) on a log-log scale for all
sets of images. The solid line is a functional fit to a power law
resulting inb=0.75±0.03.

FIG. 16. Plot ofC2s`d vs d (i.e., time) on a log-log scale for all
sets of images. The solid line is a functional fit to Eq.(14) of slope
2b resulting inb=0.75±0.03.
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[42], and no direct experimental evidence has been pre-
sented.

In addition it has been shown numerically that uncorre-
lated noise with power-law-distributed amplitudes may lead
to multifractality [43]. The multifractal nature is exposed by
examining the scaling behavior of theqth order height-height
correlation functions of the surface with[see Eqs.(12) and
(13)]

gq = qHq, s22d

whereHq changes withq. For systems without multifractal-
ity, Hq is constant for allq and equals the roughening expo-
nent a. Many authors have reported multifractality in 2+1
dimensions for a variety of surfaces by measuring theHq
spectrum, including those that have been vacuum deposited
as was done here. Although there are exceptions, most of
these authors do not measureb, as they are interested in
surface characterization and not in the dynamics. As a result,
the question of the cause of the multifractality is often ne-
glected. We also point out that other authors[37] suggested
thatCqs,d may not have been a well defined quantity as used
for the proof of multifractality in Ref.[43]. They argued that
due to the particular model used in Ref.[43], the probability
distribution describing the nearest neighbor height difference
d follows a power law for larged resulting in Cqs,d not
being a well defined quantity for largeq, becauseCqs,d di-
verges with system size. Explicitly stated,Cqs,d→` for
largeq asL→` if

Psdd ,
1

dm s23d

for larged [44]. Barabásiet al. [43] justified the use ofCqs,d
by noting that for finite systems and a finite number of
samplesCqs,d is always meaningful. In fact it was this cross-
over to divergent behavior in the limit of infinite system size
where the change inHq was seen for this finite system. The
change or step inHq was dubbed a phase transition in the
spectrum ofHq. In this work we interpret changingHq as
evidence for mulitfractility, due to our finite system size, and
also point out evidence for Eq.(23).

In an effort to interpret our data along these lines we have
plottedCq

1/q vs , for a representative set ofd in Fig. 17. For
clarity only q=1–5, 8, 11, and 20 areplotted. When the
height-height correlation functions are plotted in this way the
slope of the linear region isHq. As can be seen in the figure,
Hq decreases asq increases. This is shown more explicitly in
Figs. 18 and 19, which are plots ofHq as a function ofq for
dø220 nm and d.220 nm, respectively. The data are
shown in two separate figures for clarity. The general trend is
that for smallq, Hq<0.9 and then asq increases,Hq de-
creases and then approaches a constant value. These shifts in
Hq as a function ofq are evidence for multifractal behavior.
A general trend inHq asd changes is not apparent although
for values ofd greater thand,220 nm the decrease inHq
tends to be sharper and approaches a constant value at lower
Hq than for lesser values ofd. Again the results from the
sample with d=50 nm, and to a lesser extent withd
=520 nm, both from set II are not consistent with the rest of

the results. Numerical studies[45] have investigated the de-
pendance ofHq on q for a range of values ofm, but these the
simulations were performed in 1+1 dimensions and are not
generally applicable to our results.

As mentioned, Barabásiet al. [43] have suggested that the
step in theHq spectrum corresponds to a phase transition

FIG. 17. (Color online) Log-log plot ofCq
1/q vs , for d equal to

(a) 125 nm,(b) 220 nm,(c) 370 nm, and(d) 520 nm for differentq.
For clarity, Cq is shown only for selectq even thoughCq

1/q was
calculated forq=1–20. In each panel starting from the bottom and
going up,q=1, 2, 3, 4, 5, 8, 11, and 20.Hq is the slope of each
curve in the region of small,, and decreases asq increases.
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beginning atq=m. In our case the beginning of the transition
is not well defined, but a broad estimate sets the transition in
the range ofq=2.5–5.0, which impliesm=2.5–5.0. We can
also use our measured values ofa andb to obtain a value of
m using Eqs.(20) and (21) for D=2. Using ā=0.88±0.03
yields m=3.5±0.2, while usingb=0.75±0.03 yieldsm
=3.7±0.1; both values ofm are in statistical agreement and
fall into the middle of the range ofm estimated from theHq

spectra. We also note for our measured values thata+a /b
=2.05±0.07, which is consistent with the prediction of Eq.
(18) . These results suggest the presence of power-law-
distributed noise in our samples of vacuum deposited CaF2

on glass.
Motivated by these results we then searched for the be-

havior indicated in Eq.(23) . We define the nearest neighbor
height differenced as

d =
uhsrW,td − hsrW + rWnn,tdu

urWnnu
, s24d

whererWnn is the vector pointing fromrW to the nearest neigh-
bor. In our caseurWnnu=1 pixel. d was calculated for every
nearest neighbor pair on a particular image of the surfaces. A
histogram of the data, with the peak normalized to unity,
provides the probability distributionPsdd. The values ofPsdd
used here are averaged over several images. Figure 20 shows
log10fPsddg plotted versus log10fdg for d=30, 175, 300, and
520 nm. Mindful that the span ofd values is relatively nar-
row, there are two regions that show behavior consistent with
a power law in samples with larged, and one region consis-
tent with power-law behavior for samples with smallerd.
Both regions occur at larged. The solid lines in the figure
indicate a linear fit for the two regions ford=520 nm. The
first region spans roughlyd=0.75–1.5 and ford.1.5 there
is a crossover to a second regime that is roughly linear with
a more negative exponent. Asd gets smaller the first linear
region shrinks until it is barely visible atd=175 nm, and not
visible for d,175 nm. The second linear region is still vis-
ible for all values ofd. The slope of the second linear region
ranges from roughly −10 to −5 ford=30–520 nm. The
crossover to the second linear regime is most likely indica-
tive of a truncation in the spectrum of the noise distribution
due to the finite nature of the experiments. The values of the
slope in the first region are modestly close tom=3.5–3.7
obtained froma and b and are most likely related to Eq.
(23). Defining those slopes asm, Fig. 21 showsm so deter-
mined vsd for the distributions where this linear region is
visible. The solid line indicates the value ofm<3.6 obtained
from a and b. The range of the values ofm obtained from
Fig. 20 is roughly 3–5, similar to that which was estimated
from Figs. 18 and 19. As stated earlier, these two features are
theoretically linked and the overlapping ranges should be
expected.

At small d, m from Psdd tends to be higher thanm from a
andb and atd,250 nm there is a crossover to lower values

FIG. 18. (Color online) Hq vs q for dø220 nm. The numbers in
the legend refer to the nominal thickness of the filmd in nanom-
eters. The labels I and II refer to set I and set II, respectively, where
needed.

FIG. 19. (Color online) Hq vs q for d.220 nm. The numbers in
the legend refer to the nominal thickness of the filmd in nanom-
eters. The labels I and II refer to sets I and set II, respectively,
where needed.

FIG. 20. log10fPsddg vs log10fdg for d=30, 175, 300, and
520 nm corresponding to the inverted triangles, squares, triangles,
and circles, respectively. There are two visible linear regions for
dù175 nm and only one ford,175 nm. The solid lines show
linear fits for each linear region ford=520 nm.
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of m. This behavior is somewhat reminiscent of the kurtosis
of the height distributions plotted in Fig. 3. Earlier we argued
that the high kurtosis was likely due to deep valleys on the
deposited surface, as indicated by the negative skewness in
that region ofd. Sinced is essentially the local slope on the
interface, andm in Fig. 21 is the negative of the exponent in
the power-law distribution ofd, a higherm in Eq. (23) means
that regions of large local slope are less likely. It is possible
that the similar trends in these plots is coincidental, but this
may also indicate that the deep valleys present on the smalld
samples are less likely to descend quickly when compared to
the structures on the largerd samples.

Unfortunately, we are not able to measure the noise spec-
trum directly for further verification of a power-law distribu-
tion, but we consider our results as presented as evidence
toward this type of distribution. The previously mentioned
experiments in 1+1 dimensions were able to measure the
morphology of the interface directly as it grew, which al-
lowed definition and measurement of the noise in the system
[39–41]. In our system we do not directly measure a single
interface as it grows, but rather grow an interface for a time
t and then terminate its growth and repeat the process for a
different time on a new substrate. The result is our sets of
samples, which are many realizations of the noise spectrum.
The fact that the results of many realizations of the noise,
with the exception of two, conspire to give a single value of
m is remarkable. Collectively, the self-consistent evidence
presented here allows us to conclude that our system is con-
sistent with domination by rare noise events. This in turn
suggests that our system is described by the KPZ equation
dominated by power-law-distributed noise. We should point
out that other models have been proposed to account for
large values ofa and b, which are experimentally inacces-
sible to us. Most notable of these is a correlated noise model,
where there are spatial and/or temporal correlations in the
noise spectrum[32]. The Galilean invariance that leads to
Eq. (18) breaks down in the presence of temporally corre-
lated noise, but remains valid for spatially correlated noise
[32]. Since our measured values ofa andb are in agreement
with Eq. (18), we do not expect the presence of temporally
correlated noise, nor are we aware of any physical mecha-

nisms in our system that would lead to either spatial or tem-
poral correlations in our noise spectrum.

Part of the difficulty in measuring the noise in our system
is the lack of knowledge pertaining to the physical source of
the noise. The absence of physical justification for the inclu-
sion of power-law-distributed noise into any system has hin-
dered the verification of this hypothesis[11,33]. Although it
has been shown that power-law noise can arise in models
having quenched disorder[46], such as that in the two phase
fluid experiments[39,47].

Perhaps, a reasonable thought may be that our noise dis-
tribution describes the size of the grains deposited on the
surface. It is possible that as the CaF2 molecules are evapo-
rated and moving in the vapor inside the bell jar they occa-
sionally interact. If the energy of the molecules is low
enough there is a probability that they will stick together. A
rough estimate indicates that the mean free path of the CaF2
traveling in the bell jar during evaporation is,10 m com-
pared to the distance between the deposition source and the
sample which is,0.4 m. Considering this, it seems unlikely
that a large number multiple molecule clusters will be depos-
ited on the surface. In the case that such an event would
occur, the size of the cluster would be small and likely only
contain several molecules. Consequently, it does not seem
probable that our noise distribution describes the size of
grains deposited on the surface.

D. Initial conditions

We have also done preliminary experiments regarding the
effects of the initial growth condition on the resulting surface
characteristics. Theoretical work using a Huygens principle
construction to model the columnar growth of an amorphous
film has indicated that the initial conditions of a sputter de-
posited interface can noticeably alter the morphology of the
growing surface[48]. An AFM image of a glass substrate,
similar to those used here, reveals very small surface struc-
ture withwsL ,0d=0.4 nm. We did, however, see two regions
of power-law scaling inCqs,d as shown Fig. 22. The two
regions of scaling, which obey Eq.(13) , appear with a cross-
over at,* <20 nm for C1s,d, which gradually increases to
,* <30 nm for C20s,d. Figure 23 is plot ofC2s,d vs , for

FIG. 21. m vs d for those samples with two linear regions in
Psdd. The solid line indicatesm obtained froma and b, and the
error bars are taken from the linear fit.

FIG. 22. Cqs,d vs , for a glass surface forq=1–20 on alog-log
scale. The arrow indicates the direction of increasingq.
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glass, where the solid lines are functional fits to the two
regions of scaling and the slopes of the lines equal 2a for
each region. The roughness exponents were measured asa
=0.51±0.03 anda=0.19±0.03 for,,,* and,.,* , respec-
tively, very different thanā=0.88 found from CaF2. Figure
24 showsHq vs q for the two regions. For,,,* , Hq in-
creases and then starts to decrease atq=9. The step inHq for
,.,* , on the other hand, is smaller in magnitude and de-
creases untilq=9, at which point it becomes relatively con-
stant withHq=0.1. The regions of steepest slope inHq for
glass coincide with the values ofm determined froma andb
and the steps in Figs. 18 and 19, but the values ofa are
significantly different, which suggests that roughness of the
CaF2 is not a direct extension of the glass roughness. The
structures on the glass surface are very small in height, with
wsL ,0d=0.4 nm, but tend to be fairly wide with,* ,20 nm,
which is also consistent with thed=0 nm value ofsxy shown
in Fig. 5. Due to the very small height fluctuations on the
surface of the glass and the disagreement among the values
of a, we speculate that the initial conditions of the glass
substrates do not play a significant role in the growth of the
structure morphology of our CaF2 surfaces.

As a further test regarding the effect of the initial condi-
tions on the observed roughness of growing CaF2 we can
look at the data for the set III samples. The gold film surface
structures are taller than those on glass withwsL ,0d
=0.76 nm and half as wide with a typical lateral length scale
of ,10 nm(see Fig. 9). Figure 25 shows the values ofa for
the set III samples. Thed=0-nm point represents the gold
film and the solid line is the average valueā found for the set
I and II samples of CaF2 on glass. The data show an inter-
esting trend for small values ofd. As d increases from zero,
a also increases toward the value found for the CaF2 on glass
samples and then becomes reasonably constant aroundā.
Again we have scaled the prefactors bydg2 as shown in Fig.
26. The solid line in the figure is a power-law fit to the data
points with dù30 nm resulting inadb, where in this case,
a=0.0007±0.0001 andb=2.21±0.06. The values from this
fit are not in statistical agreement with values found for CaF2
on glass but are modestly close to those values.

Figure 27 showswsL ,td calculated using Eq.(6) for the
set III samples. The solid line is a fit to Eq.(11) resulting in
b=0.77±0.03 with a prefactor of 0.16±0.01. Figure 28

FIG. 23. C2s,d vs , for a glass surface for on a log-log scale.
The solid lines are best fits to the two linear regions, which result in
a=0.51±0.03 for,,,* anda=0.19±0.03 for,.,* .

FIG. 24. Hq vs q for a glass surface. The filled symbols repre-
sent,,,* and the open symbols represent,.,* . The error bars
were taken from the uncertainties calculated from the best fits.

FIG. 25. a vs d for the CaF2 on gold-plated glass samples(set
III ) where thed=0 point corresponds to the gold film. The solid line
is ā=0.88 calculated from CaF2 on glass data.

FIG. 26. The prefactors determined from a functional fit of the
form A2,g2 applied to C2s,d for the gold plated substrates. The
result is adb, where in this case,a=0.0007±0.0001 andb
=2.21±0.06.
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showsC2s`d as function ofd. The data were fit to Eq.(14)
resulting inb=0.78±0.03 which is in agreement with value
obtained from Fig. 27. The resulting prefactor was
0.05±0.01. The point corresponding tod=10 nm does not
follow the trend and was not included in either of the fits.
The values ofb found for the set III samples are in agree-
ment with the value found for the CaF2 on glass samples.
The prefactors are also in agreement with the values found
on glass forwsL ,td andC2s`d. Further, we have plottedHq

vs q for set III in Fig. 29 and again the data show similar
behavior to the set I and II data. Only one region of power-
law scaling was seen in the nearest neighbor height differ-
ence probability distribution for larged. This is consistent
with the results of the sets I and II substrates for this regime
of d.

Figures 25, 26, and 29 indicate that there is a crossover
from the gold film behavior to that seen in the CaF2 films
deposited directly on glass that occurs in the vicinity ofd
ø20 nm. Thed=10-nm sample is in the middle of the cross-
over regime and therefore does not follow the trend of the
higherd samples. This rapid crossover from the properties of

the gold film to those seen in CaF2 on glass substrates indi-
cates that scaling properties of the CaF2 films are not due to
the initial conditions of the film growth, but rather are due to
the CaF2 itself. Therefore it is reasonable to conclude that
power-law noise behavior is not due to initial conditions, but
is caused by some other mechanism during the growth of the
film. The possible source of the power law we observe noise
is apparently qualitatively different than in the experiments
where this type of noise was seen in 1+1 dimensions. In
those experiments[39–41] the power-law noise was ob-
served in the presence of quenched noise. Our surfaces do
not grow in the presence of quenched noise and it appears
that the effect of the initial condition is quickly washed out.

E. Similarities with simulations in 1+1 dimensions

Finally, it is somewhat amusing to compare our experi-
mental results in 2+1 dimensions to several numerical stud-
ies that have been done in 1+1 dimensions. First, we point
out that the behavior of the skewness is similar to what has
been seen in simulations for different models. Admittedly the
data are noisy, but nonetheless the trend is that for small
values ofd, m3 is close to zero and then decreases toum3u
,0.3–0.5, after which it increases to zero. This trend is
similar to the skewness of the height distribution of several
numerical studies investigating interface growth in 1+1 di-
mensions[49,50]. It is also interesting to compare our poros-
ity of the CaF2 films on the smoother surface of glass with
the model used to derive Eq.(23) . The numerical simula-
tions done by Lam and Sander[44] with power-law noise in
1+1 dimensions resulted in an aggregate with many embed-
ded voids resulting from the rare noise events. Due to the
relatively large measured porosity of our CaF2 films on glass,
we expect that voids also exist in the bulk of our films. Using
the results of their simulations, Lam and Sander report for
various values ofm the saturated velocity, defined as the
mean of the deposit height divided by the number of layers
of particles. This definition fits in with our definition of po-
rosity [see Eq.(5)] and is in fact roughly equivalent to the
slope of the line in Fig. 8,s1−fd−1=1.85±0.02. The velocity
is essentially independent of system size in the model. Tak-

FIG. 27. wsL ,td vs d on a log-log scale for the CaF2 on gold-
plated glass samples(set III). The solid line is a fit to Eq.(11)
excluding thed=10-nm point, resulting inb=0.77±0.03.

FIG. 28. C2s`d vs d on a log-log scale for the CaF2 on gold-
plated glass samples(set III). The solid line is a fit to Eq.(14)
excluding thed=10-nm point, resulting inb=0.78±0.03.

FIG. 29. Hq vs q for the set III samples. The numbers in the
legend refer to the thickness of the CaF2 film d.
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ing into consideration the model is in 1+1 dimensions, and
that our surfaces have yet to saturate, for our value ofm we
estimate a value for the velocity from Fig. 3 in Ref.[44] of
roughly 1.9±0.2, in agreement with our value obtained from
the porosity.

V. CONCLUSIONS

We have investigated rough CaF2 surfaces with film cov-
erages spanning an order of magnitude using AFM and pro-
filometer measurements. Our results indicate that the struc-
tures on the surface increase in height and width as the film
thickness is increased. Our results are in qualitative agree-
ment and modest quantitative agreement with other results.
In addition, we have reported the increase in surface area, as
seen by AFM, due to roughness, which increases with film
thickness. We have also measured the porosity of the films,
which we have found to be constant over the entire range of
film thicknesses studied.

We have provided evidence consistent with the presence
of a power-law-distributed noise spectrum resulting in the

rough surface of vacuum deposited CaF2. This is brought to
light through the measurement of the multifractal spectra, the
measurement of the distribution of nearest neighbor height
differences, and the measurement of the critical exponents,
all which give consistent results for the exponent in the noise
distribution to bem+1<4.6. In addition, the set III data
indicate that effects due to the initial conditions do not per-
sist for large d. How this power-law-distributed noise is
physically manifested is not known, nor is the direct physi-
cally significance ofm. In addition we have pointed out sev-
eral similarities between our data and simulations done on a
variety of other systems in 1+1 dimensions, where direct
comparisons cannot be made.
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